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Set theory is the theory of everything!

• Set theory is a foundation for mathematics. This means
1 All abstract mathematical concepts can be expressed in the language of

set theory.
2 All concrete mathematical objects can be encoded as sets.



“ By a set we mean any collection M
of determinate, distinct objects
(called the elements of M) of our
intuition or thought into a whole.”
(Georg Cantor, 1985)



• For us, a set is a collection of elements from a specified universe of
discourse.

• The collection of everything in the universe of discourse is called the
universal set, denoted by U .



• For us, a set is a collection of elements from a specified universe of
discourse.

• The collection of everything in the universe of discourse is called the
universal set, denoted by U .



How to form sets?

• Given a set A of objects in some universe and an object a, we write

a ∈ A

to say that a is an element of A.

• Cantor’s characterization suggests that whenever we have some
property (aka predicate), P(x), of a domain X , we can form the set of
elements that have that property. We denote this set by

{x ∈ X | P(x)} .

• The notation above is called the “set-builder” notation.

• We call the set {x ∈ X | P(x)} the extension of property/predicate P.

• Note that the predicate P can have many variables.
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Forming sets: Example

Example
Let our universe of discourse U be the following collection:

Each object x in U has a color c(x) ∈ {red, blue, yellow} and a shape
s(x) ∈ {triangle, square, circle}. We can form the following sets:

1 {x | s(x) = circle} = { , }
2 {x | c(x) = blue ∧ s(x) = square} = { }
3 {x | c(x) = yellow ∨ s(x) = triangle} = { , , }
4 {x | c(x) = yellow ∧ s(x) = triangle} = ∅ = {}
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Instead of

E = {2, 4, 6, ...}

we use
E = {n ∈ N | n is even} .

More formally, this set is written as

{n ∈ N | ∃k ∈ N, n = 2k} .

0 2 4 61 3 5



More examples

• {n ∈ Z | n is odd}

• {n ∈ N | n is prime}
• {n ∈ Z | n is prime and greater than 2}
• {n ∈ N | n can be written as a sum of its proper divisors}
• {a ∈ R | a is equal to 1, 2, 3, or π }
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An alternative to set-builder notation
An alternate form of set-builder notation uses an expression involving one or
more variables to the left of the vertical bar, and the range of the variable(s)
to the right. The elements of the set are then the values of the expression as
the variable(s) vary:

{expr(x) | x ∈ X} is defined to mean {y | ∃x ∈ X , y = expr(x)}

Example
The expression {2n | n ∈ N} denotes the set of even numbers. It is
shorthand for {n ∈ N | ∃k ∈ N, n = 2k}.

Example
We can use a mix of the two notations:

{p2 + 1 | p is prime} .
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Some important sets

Using set-builder notation, we can define a number of common and
important sets.

• ∅ = {x ∈ U | ⊥} .

• U = {x ∈ U | ⊤} .

• For an object a, we have {x ∈ U | x = a} is the singleton set {a}.

• For distinct objects a and b, we have {x ∈ U | (x = a) ∨ (x = b)} is the
set {a, b}.
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Inhabited vs non-empty
Definition
A set X is inhabited if it has at least one element. Formally, a set X is
inhabited if the sentence

∃x ∈ X

– or equivalently the sentence ∃x (x ∈ X ) – is true.

Definition
A set X is empty if it is not inhabited, i.e.

¬∃x (x ∈ X )

is true.

Definition
A set X is non-empty whenever

¬(¬∃x (x ∈ X ))

is true.

Exercise
Use natural deduction to show that every inhabited set is non-empty.



Inhabited vs non-empty
Definition
A set X is inhabited if it has at least one element. Formally, a set X is
inhabited if the sentence

∃x ∈ X

– or equivalently the sentence ∃x (x ∈ X ) – is true.

Definition
A set X is empty if it is not inhabited, i.e.

¬∃x (x ∈ X )

is true.

Definition
A set X is non-empty whenever

¬(¬∃x (x ∈ X ))

is true.

Exercise
Use natural deduction to show that every inhabited set is non-empty.



Inhabited vs non-empty
Definition
A set X is inhabited if it has at least one element. Formally, a set X is
inhabited if the sentence

∃x ∈ X

– or equivalently the sentence ∃x (x ∈ X ) – is true.

Definition
A set X is empty if it is not inhabited, i.e.

¬∃x (x ∈ X )

is true.

Definition
A set X is non-empty whenever

¬(¬∃x (x ∈ X ))

is true.

Exercise
Use natural deduction to show that every inhabited set is non-empty.



Operations on sets

Using set-builder notation, we can define a number of common and
important operations on sets.

Union A ∪ B = {x | x ∈ A ∨ x ∈ B}
Intersection A ∩ B = {x | x ∈ A ∧ x ∈ B}

Disjoint Union A ⊔ B = {inl(x) | x ∈ A} ∪ {inr(x) | x ∈ B}
Complement Ac = {x | ¬ (x ∈ A) }

Relative complement X \ Y = {x ∈ X | x ̸∈ Y} =def {x | (x ∈ X ) ∧ ¬(x ∈ Y )}
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Logical operations and set operations

The important sets and operations we have built so far are readily
representable in symbolic logic.

• ∀x (x ∈ ∅ ↔ ⊥)

• ∀x (x ∈ U ↔ ⊤)

• ∀x (x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B)

• ∀x (x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B)

• ∀x (x ∈ Ac ↔ ¬x ∈ A)

• ∀x (x ∈ A \ B ↔ x ∈ A ∧ ¬x ∈ B)



Logical operations and set operations

The important sets and operations we have built so far are readily
representable in symbolic logic.

• ∀x (x ∈ ∅ ↔ ⊥)

• ∀x (x ∈ U ↔ ⊤)

• ∀x (x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B)

• ∀x (x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B)

• ∀x (x ∈ Ac ↔ ¬x ∈ A)

• ∀x (x ∈ A \ B ↔ x ∈ A ∧ ¬x ∈ B)



Logical operations and set operations

The important sets and operations we have built so far are readily
representable in symbolic logic.

• ∀x (x ∈ ∅ ↔ ⊥)

• ∀x (x ∈ U ↔ ⊤)

• ∀x (x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B)

• ∀x (x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B)

• ∀x (x ∈ Ac ↔ ¬x ∈ A)

• ∀x (x ∈ A \ B ↔ x ∈ A ∧ ¬x ∈ B)



Logical operations and set operations

The important sets and operations we have built so far are readily
representable in symbolic logic.

• ∀x (x ∈ ∅ ↔ ⊥)

• ∀x (x ∈ U ↔ ⊤)

• ∀x (x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B)

• ∀x (x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B)

• ∀x (x ∈ Ac ↔ ¬x ∈ A)

• ∀x (x ∈ A \ B ↔ x ∈ A ∧ ¬x ∈ B)



Logical operations and set operations

The important sets and operations we have built so far are readily
representable in symbolic logic.

• ∀x (x ∈ ∅ ↔ ⊥)

• ∀x (x ∈ U ↔ ⊤)

• ∀x (x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B)

• ∀x (x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B)

• ∀x (x ∈ Ac ↔ ¬x ∈ A)

• ∀x (x ∈ A \ B ↔ x ∈ A ∧ ¬x ∈ B)



Logical operations and set operations

The important sets and operations we have built so far are readily
representable in symbolic logic.

• ∀x (x ∈ ∅ ↔ ⊥)

• ∀x (x ∈ U ↔ ⊤)

• ∀x (x ∈ A ∪ B ↔ x ∈ A ∨ x ∈ B)

• ∀x (x ∈ A ∩ B ↔ x ∈ A ∧ x ∈ B)

• ∀x (x ∈ Ac ↔ ¬x ∈ A)

• ∀x (x ∈ A \ B ↔ x ∈ A ∧ ¬x ∈ B)



Equality of sets

1 Are the sets

{n ∈ N | ∃k ∈ N, n = 2k} and {n ∈ Q | ∃k ∈ N, n = 2k}

equal?

2 How about ‘the set of prime numbers less than 2’ and ‘the set of even
prime numbers greater than 2’?

3 How about

{x ∈ Q | x2 < 2} and {x ∈ Q | x2 ⩽ 2}?
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Extensional equality of sets

Definition (Set extensionality)
Two sets A and B are equal precisely when they have the same elements.

The formal sentence expressing A = B is

∀x (x ∈ A ⇔ x ∈ B) .

Therefore, using the extensional definition of equality of sets, the
answers to the questions (1)-(3) of the previous slide are all positive.



As an exercise we prove the distributivity of intersection (∩) over union (∪) of
sets.

Theorem
Let A, B, and C denote sets of elements of some domain. Then
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).



Proof.
Let x be arbitrary, and suppose x is in A ∩ (B ∪ C). Then x is in A, and either
x is in B or x is in C. In the first case, x is in A and x is in B, and hence x is
in A ∩ B. In the second case, x is in A and C, and hence x is in A ∩ C.
Therefore, x is in (A ∩ B) ∪ (A ∩ C).

Conversely, suppose x is in
(A ∩ B) ∪ (A ∩ C). There are now two cases.
First, suppose x is in A ∩ B. Then x is in both A and B. Since x is in B, it is
also in B ∪ C, and so x is in A ∩ (B ∪ C).
The second case is similar: suppose x is in A ∩ C. Then x is in both A and
C, and so also in B ∪ C. Hence, in this case also, x is in A ∩ (B ∪ C), as
required.
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You should be able to see elements of natural deduction implicitly in the
proof above. Explicitly, we need to construct a natural deduction proof of the
sentence

∀x (x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C)) .

y ∈ A ∩ (B ∪ C)
y ∈ B ∪ C

y ∈ A ∩ (B ∪ C)
y ∈ A

1
y ∈ B

y ∈ A ∩ B
y ∈ (A ∩ B) ∪ (A ∩ C)

y ∈ A ∩ (B ∪ C)
y ∈ A

1
y ∈ C

y ∈ A ∩ C
y ∈ (A ∩ B) ∪ (A ∩ C)

1
y ∈ (A ∩ B) ∪ (A ∩ C)

∀x (x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C))
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proof above. Explicitly, we need to construct a natural deduction proof of the
sentence

∀x (x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C)) .

y ∈ A ∩ (B ∪ C)
y ∈ B ∪ C

y ∈ A ∩ (B ∪ C)
y ∈ A

1
y ∈ B

y ∈ A ∩ B
y ∈ (A ∩ B) ∪ (A ∩ C)

y ∈ A ∩ (B ∪ C)
y ∈ A

1
y ∈ C

y ∈ A ∩ C
y ∈ (A ∩ B) ∪ (A ∩ C)

1
y ∈ (A ∩ B) ∪ (A ∩ C)

∀x (x ∈ A ∩ (B ∪ C) ↔ x ∈ (A ∩ B) ∪ (A ∩ C))



Subsets

Definition
If A and B are sets, A is said to be a subset of B, written A ⊆ B, if every
element of A is an element of B.

Formally, A ⊆ B is expressed by the sentence

∀x (x ∈ A ⇒ x ∈ B)

Exercise
Prove that A = B if and only if A ⊆ B and B ⊆ A.



Subsets (II)

Let’s prove few facts about the subset relationship:

Exercise
1 Prove that for all sets A we have A ⊆ A.

2 Prove that for all sets A, B and C, if A ⊆ B and B ⊆ C then A ⊆ C.

3 Prove that for all sets A we have ∅ ⊆ A.

4 Prove that for all sets A, B, if A ∪ B = B then A ⊆ B.

5 Prove that for all sets A, B, if A ∩ B = A then A ⊆ B.
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Exercise
1 Prove that for all sets A we have A ⊆ A.

2 Prove that for all sets A, B and C, if A ⊆ B and B ⊆ C then A ⊆ C.

3 Prove that for all sets A we have ∅ ⊆ A.

4 Prove that for all sets A, B, if A ∪ B = B then A ⊆ B.

5 Prove that for all sets A, B, if A ∩ B = A then A ⊆ B.



Remark
It is true that ∅ ⊆ ∅, but false that ∅ ∈ ∅. Indeed,

• ∅ ⊆ ∅ means ∀x ∈ ∅, x ∈ ∅; but propositions of the form ∀x ∈ ∅, p(x)
are always true.

• The empty set has no elements; if ∅ ∈ ∅ were true, it would mean that
∅ had an element (that element being ∅). So it must be the case that
∅ ̸∈ ∅.



A ∪ Ac = U

A ∪ A = A

A ∪ ∅ = A

A ∪ U = U

A ∪ B = B ∪ A

(A ∪ B) ∪ C = A ∪ (B ∪ C)

(A ∪ B)c ⊂ Ac ∩ Bc

A ∩ Ac = ∅

A ∩ A = A

A ∩ ∅ = ∅

A ∩ U = A

A ∩ B = B ∩ A

(A ∩ B) ∩ C = A ∩ (B ∩ C)

(A ∩ B)c ⊇ Ac ∪ Bc

and

A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C)

A ∩ (A ∪ B) = A

A ∪ (A ∩ B) = A



Classical sets

Definition
We call a set A classical if Acc ⊆ A.

Exercise
Show that if A is a classical set then Acc = A .
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A digression: numbers from sets
We can define “fake” numbers by way of sets:

0 = ∅
1 = {0} = {∅} = {{}}
2 = {0, 1} = {∅, {∅}} = {{}, {{}}}
...
n = {0, 1, · · · , n − 1}

We can define another set of “fake” numbers by way of sets:

0 = ∅
1 = {0} = {∅}
2 = {1} = {{0}} = {{{}}}
...
n = {0, 1, · · · , n − 1}

Are any of these sets satisfactory definitions of natural numbers?
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Indexed Families of Sets
If I is a set, we will sometimes wish to consider a family {Ai | i ∈ I} of sets
indexed by elements of I.

An alternative notation for a family that we
ocassionally use is (Ai)i∈I .
For example, we might be interested in a sequence

A0, A1, A2, ...

of sets indexed by the natural numbers.

Example
• For each natural number n, we can define the set An to be the set of

people alive today that are of age n.

• For every positive real number r we can define Br to be the interval
[−r , r ]. Then (Br )r∈R is a family of sets indexed by the real numbers.

• For every natural number n we can define
Cn = {k ∈ N | k is a divisor of n} as the set of divisors of n.



Indexed Families of Sets
If I is a set, we will sometimes wish to consider a family {Ai | i ∈ I} of sets
indexed by elements of I. An alternative notation for a family that we
ocassionally use is (Ai)i∈I .
For example, we might be interested in a sequence

A0, A1, A2, ...

of sets indexed by the natural numbers.

Example
• For each natural number n, we can define the set An to be the set of

people alive today that are of age n.

• For every positive real number r we can define Br to be the interval
[−r , r ]. Then (Br )r∈R is a family of sets indexed by the real numbers.

• For every natural number n we can define
Cn = {k ∈ N | k is a divisor of n} as the set of divisors of n.



Union and intersection of indexed families

Given a family {Ai | i ∈ I} of sets indexed by I, we can form its union:⋃
i∈I

Ai = {x | x ∈ Ai for some i ∈ I}

We can also form the intersection of a family of sets:⋂
i∈I

Ai = {x | x ∈ Ai for every i ∈ I}



So an element x is in
⋃
i∈I

Ai if and only if x is in Ai for some i in I,

and
x is in

⋂
i∈I

Ai if and only if x is in Ai for every i in I.

These operations are represented in symbolic logic by the existential and the
universal quantifiers. We have:

∀x (x ∈
⋃
i∈I

Ai ↔ ∃i ∈ I (x ∈ Ai))

∀x (x ∈
⋂
i∈I

Ai ↔ ∀i ∈ I (x ∈ Ai))



Suppose that the indexing set I contains just two elements, say I = {0, 1}.

Let (Ai)i∈I be a family of sets indexed by I.
Because I has two elements, this family consists of just two sets A0 and A1.
Then the union and intersection of the family (Ai)i∈I are the same as the
union and intersection of A0 and A1.

⋃
i∈I

Ai = A0 ∪ A1.⋂
i∈I

Ai = A0 ∩ A1.

This means that the union and intersection of two sets are just a special
case of the union and intersection of a family of sets.

Exercise
What is

⋃
i∈I

Ai and
⋂
i∈I

Ai when the indexing set I is empty?
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Exercise
Prove the following equality of sets:⋃

i∈I

{i} = I

Exercise
Prove the following equalities of sets:

1 A ∩
⋃
i∈I

Bi =
⋃
i∈I

(A ∩ Bi)

2 A ∪
⋂
i∈I

Bi =
⋂
i∈I

(A ∪ Bi)



We can have a family of sets indexed by many sets: for instance, a family
(Ai ,j)i∈I,j∈J .

For every such family, consider the family (Bi)i∈I where Bi =
⋃
j∈J

Ai ,j ( fix i ∈ I,

and let j range over J). We define
⋃
i∈I

⋃
j∈J

Ai ,j to be
⋃
i∈I

Bi .

Exercise
Prove the following equalities of sets:

1
⋃
i∈I

⋃
j∈J

Ai ,j =
⋃
j∈J

⋃
i∈I

Ai ,j

2
⋂
i∈I

⋂
j∈J

Ai ,j =
⋂
j∈J

⋂
i∈I

Ai ,j
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⋃
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Exercise
Show that⋃

i∈I

⋂
j∈J

Ai ,j ⊆
⋂
j∈J

⋃
i∈I

Ai ,j

Proof.
Let x be an arbitrary member of

⋃
i∈I

⋂
j∈J

Ai ,j . Therefore, there is some i , say i0,

such that x ∈
⋂
j∈J

Ai0,j . Therefore for every j ∈ J, x ∈ Ai0,j . Hence, for every

j ∈ J there is some i , namely i0, such that x ∈ Ai ,j . Therefore, x ∈
⋃
i∈I

⋂
j∈J

Ai ,j .

It follows that
⋃
i∈I

⋂
j∈J

Ai ,j ⊆
⋂
j∈J

⋃
i∈I

Ai ,j .



Exercise
Find the indexing sets I and J and family (Ai ,j)i∈I,j∈J such that⋂

j∈J

⋃
i∈I

Ai ,j ⊈
⋃
i∈I

⋂
j∈J

Ai ,j

Take the indexing sets I and J to be the set of natural numbers and let Ai ,j to
be the empty set if i ̸= j , and the singleton set {∗} if i = j . Now,⋂

j∈J

⋃
i∈I

Ai ,j = {∗}

whereas ⋃
i∈I

⋂
j∈J

Ai ,j = ∅ .
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The power set

Let X be a set. The power set of X , written P(X ) is the set of all subsets
of X .

Formally,
P(X ) =def {S | S ⊆ X}

Therefore,
∀S

(
S ⊆ X ⇔ S ∈ P(X )

)
Note that the power set of every set is inhabited since for a set X we
have ∅ ∈ P(X ) and X ∈ P(X ).
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The power set

Let X be a set. The power set of X , written P(X ) is the set of all subsets
of X .

Formally,
P(X ) =def {S | S ⊆ X}

Therefore,
∀S

(
S ⊆ X ⇔ S ∈ P(X )

)
Note that the power set of every set is inhabited since for a set X we
have ∅ ∈ P(X ) and X ∈ P(X ).



Example
Let X be a set. Define the family (Sx )x∈X where Sx is the set of all subsets of
X which contain x. In other words:

Sx = {A ⊆ X | x ∈ A} .

Show that

1
⋃
x∈X

Sx = P(X ) \ {∅}

2
⋂
x∈X

Sx = {X}



Cartesian product of sets

With the tools we have developed we can define the cartesian product A × B
of sets A and B to be the set containing exactly ordered pairs

(a, b) =def {{a}, {a, b}} ∈ P(P(A ∪ B))

where a ∈ A and b ∈ B.
In other words,

A × B := {(a, b) | a ∈ A and b ∈ B} .

Notice that if a = b, the set (a, b) has only one element:

(a, a) = {{a}, {a, a}} = {{a}, {a}} = {{a}}.
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The following theorem shows that the definition of cartesian product of sets
is reasonable.

Theorem
(a, b) = (c, d) if and only if a = c and b = d.

We leave the proof to the reader as an exercise.
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